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Finite amplitude cellular convection 

By W. V. R. MALKUS and G. VERONIS 
lt'oods Hole Oceanographic Institution, Woods Hole, Massachusetts 

(Receaved 22 Nozember 1957) 

SUMMARY 
When a layer of fluid is heated uniformly from below and cooled 

from above, a cellular regime of steady convection is set up  at values 
of the Rayleigh number exceeding a critical value. A method is 
presented here to determine the form and amplitude of this 
convection. The  non-linear equations describing the fields of 
motion and temperature are expanded in a sequence of inhomo- 
geneous linear equations dependent upon the solutions of the 
linear stability problem. We find that there are an infinite number 
of steady-state finite amplitude solutions (having different 
horizontal plan-forms) which formally satisfy these equations. A 
criterion for ' relative stability ' is deduced which selects as the 
realized solution that one which has the maximum mean-square 
temperature gradient. Particular conclusions are that for a large 
Prandtl number the amplitude of the convection is determined 
primarily by the distortion of the distribution of mean tempera- 
ture and only secondarily by the self-distortion of the disturbance, 
and that when the Prandtl number is less than unity self-distortion 
plays the dominant role in amplitude determination. The  initial heat 
transport due to convection depends linearly on the Rayleigh 
number ; the heat transport at higher Rayleigh numbers departs 
only slightly from this linear dependence. Square horizontal 
plan-forms are preferred to hexagonal plan-forms in ordinary 
fluids with symmetric boundary conditions. The  proposed 
finite amplitude method is applicable to any model of shear flow 
or convection with a soluble stability problem. 

INTRODUCTION 
This is a study of the non-linear advective processes which determine 

the form and amplitude of cellular convection. We shall pose our problem 
as a formal extension of the conventional linearized stability theory. One 
purpose is to advance a bit closer to the formidable problem of the onset 
of turbulence. 

Linearized stability theory determines those conditions of a known 
steady field of flow which first permit the growth of an infinitesimal 
disturbance. The  amplitude of the preferred disturbance or class of 
preferred disturbances is found from the theory to  grow exponentially in 
time for values of the external parameters in excess of a critical value. 

F.M. P 
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In actuality such disturbances do not grow exponentially without limit, 
but by advecting heat and momentum they alter their own form and the 
distribution of their energy sources to achieve a finite equilibrium amplitude. 
How does this amplitude depend on the external parameters ? HOW much 
heat and momentum are advected? What distortion of the form of the 
disturbance occurs at various amplitudes ? What determines the preferred 
state of motion when the stability problem is degenerate, i.e. when more 
than one solution is possible at the point of instability? Under what 
conditions does this finite disturbance itself become unstable ? Is the new 
field a similar cellular disturbance or has it the form of an aperiodic 
‘turbulent ’ motion ? 

We have chosen to investigate the steady-state, finite-amplitude, vertical 
convection of heat for several reasons. It is perhaps the simplest mani- 
festation of non-linear advection in fluids, both geometrically and in the 
equipment needed for controlled experiments. The stability problem has 
been exactly solved in terms of trigonometric and hyperbolic functions 
(Rayleigh 1916 ; Pellew & Southwell 1940). Some detailed experimental 
data on the heat transport due to the convection at and beyond the point 
of instability exist (Malkus 1954 a) to compare with theoretical deductions. 
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Figure 1. Geometry of the convection problem. 

The physical situation to be studied is shown schematically in figure 1. 
The fluid is contained between two extensive horizontal conducting surfaces 
distance d apart. The upper surface is held at the temperature T, and the 
lower surface at the higher temperature TH. In the absence of motion the 
temperature distribution in the fluid is determined solely by the thermal 
conductivity and is indicated by the heavy line connecting TH and Tc. 
In 1916 Lord Rayleigh deduced the criterion for marginal stability in such 
a fluid layer. This criterion involves what has come to be called the 
Rayleigh number 

where a is the linear coefficient of expansion of the fluid, g is the magnitude 
of the gravitational acceleration, pm = ( TH - T,)/d is the mean negative 
temperature gradient, K is the thermometric conductivity and v the 
kinematic viscosity of the fluid. When X exceeds a critical value convection 
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occurs as a regular cellular pattern. The theory does not distinguish 
between rectangular, triangular or hexagonal horizontal plan-forms for these 
cells. All could occur at the same value of h with identical exponential 
growth rates. Another undetermined quantity in the linear theory is the 
sign of vertical motion in the centre of the hexagons. 

The observations recorded in the earlier experimental paper (Malkus 
1954a) establish that for values of h up to ten times the critical value A, a 
steady cellular convection exists in the fluid. The heat transport due to 
this convection shows a remarkably linear increase from zero at the critical h 
to a value greater than that due to the conduction alone at A =  lOh,. This 
is the range of h to be studied in this paper. 

At A +  10Ac a new instability occurs in the fluid producing disordered 
aperiodic motions, quasi-cellular in appearance. This has been interpreted 
as the onset of some type of turbulence. However, the heat transport 
once again increases linearly with A, but with a steeper slope than in the 
cellular region. Further discrete changes which steepen the slope of the 
heat transport curve appear at higher values of X and appear to be associated 
with further instabilities. Each transition leads to a more intense and 
apparently more disordered field of motion. A preliminary statistical 
study of the convection at these high values of h has been made in an earlier 
paper (Malkus 1954b). Several results of the present study of cellular 
convection which relate to the aperiodic convection at large X will be discussed 
in the conclusion. 

The dashed curve connecting Tc and TH in figure 1 is an example of the 
distribution of horizontally-averaged temperature when cellular convection 
occurs. The boundary conditions prevent convective heat transport at 
the boundaries. Hence the additional heat transport is permitted by 
increased mean temperature gradients at the boundary and decreased 
gradients in the mid-regions of the fluid. One task we now undertake is 
to determine the magnitude and shape of this distortion of the mean 
temperature field. 

In the first section we describe the iterative method of solution for the 
finite amplitude fields of temperature and velocity. This is followed by 
a detailed treatment of the simplest case, that of two-dimensional convection 
(roll cell) for free surface boundary conditions. We were able to carry 
this analysis to ‘ sixth order ’ and investigate many of the ‘ distortions ’ 
of the initial convective disturbance. In 5 3 we study the first finite amplitude 
effects of cellular convection with rectangular and hexagonal plan-forms 
(three-dimensional cells). Up to this point a multiply-infinite set of 
steady-state finite amplitude solutions has been generated, and we turn 
to the problem of their stability. The ‘relative stability’ argument of $4 
resolves the indeterminancy of the steady-state equations by providing a 
criterion which selects the realizable solutions. In  5 5 we discuss the finite 
amplitude solutions when the fluid has rigid boundaries and in conclusion 
describe certain approximation techniques to extend the useful range of 
the formal analysis. 

P 2  
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1. BASIC EQUATIONS AND THE METHOD OF SOLUTION 

The equations which have been used by past authors to investigate 
convective instability are attributed to Boussinesq (1903, p. 173). They 
are based on the assumptions that the viscosity and thermal conductivity 
of the fluid can be treated as constants and that variations in the initial 
density field are important only in the buoyancy-force term in the equations 
of motion. Jeffreys (1930) has shown that the resulting disturbance 
equation is valid in compressible fluids if the temperature gradient minus 
the adiabatic lapse rate is used rather than the actual temperature gradient 
and if the total variations in density in the fluid are very small compared 
to the mean density. In liquids these equations for the local conservation 
of heat, momentum, and mass respectively are 

(a/at-KV2)T= -V.VT, - (1.1) 
( a p t  - vV2)V = - V . VV - VP/po + y ( T  - To)k, (1.2) 

v.v= 0, (1.3) 
where V is the vector velocity of the fluid, T is the actual temp.xrature, 
To is a standard temperature and po a standard density. P = P - g x  where 
P is the pressure, y = ocg, and k is a unit vector in the z-direction. The 
non-linear advective terms V.VT and V.VV are to be retained in this analysis 
and are the principal objects of interest. However, in applying these 
equations to finite amplitude processes it must be borne in mind that the 
maximum density fluctuation from the mean must be small. Several 
interesting geophysical and astrophysical applications of this work require 
reappraisal of the assumptions and the inclusion of additional terms in the 
equations. 

To clarify the role of the non-linear terms they will be divided into terms 
which are finite when averaged over a horizontal plane and which therefore 
modify the average field, and into terms of zero average. 

Denoting an average over a horizontal plane by a bar above the quantity, 
the heat flux equation (1.1) becomes 

aT a a -  - t - ( K p ) = - - ( W T )  
at aZ sz 

where p = - aT/az, T=T-T, and W is the vertical component of V. 
Using (1.4), (1 .1)  may be rewritten as 

(a/at-KV2)T=pW-h, - - (1.5) 
where h = V.VT- a(wT)/az,  h = 0. 

From (1.2) and (1.5) two useful relations can be generated which describe 
the gross energetics of any flow. Multiplying (1.5) by yT/&,  (1.2) by V, 
and averaging the resulting equations over the entire fluid, 

afid 

- - -  B -  I a (F), = y - WT - r"(VT.VT),, 
2 Brn at (PW' >m B, 

- 1 a -. 
--(V.V), = Y(WT),-v(vvi .vVi)m, 
2 at 
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where the subscript m denotes the mean value over a vertical line joining 
the two horizontal boundaries, and Vi denotes the i-component of the 
velocity. The averages over the triple-product terms generated by the 
zero average non-linear terms and the average over the work term V.VP 
must all vanish since they represent conservative advections within the 
fluid system (implying that (AV.VA),,=O when V.V=O and A is any 
fluctuating scalar field). 

Equation (1.7) is the ‘power integral ’ of the motion. It states that the 
time rate of change of kinetic energy per unit mass is equal to  the rate of 
release of potential energy by the convection minus the rate of dissipation 
of kinetic energy by the viscous stresses. Equation (1.6) has been written 
as a ‘power integral’ to parallel (1.7). However (1.6) is more correctly 
interpreted as either the balance equation for the mean square of fluctuations 
of the internal energy, or, equivalently, as an entropy balance equation. 
The particular value of these non-linear integral statements is in the 
determination of amplitude when the form of the motion is known or 
adequately approximated (e.g. Meksyn & Stuart 1951). We shall consider 
them later in this paper. 

Since we will pivot our analysis about the linearized stability problem, 
it is convenient to eliminate all but one of the dependent variables appearing 
as linear terms in (l .Z),  (1.3) and (1.5). Therefore, we cross differentiate 
to remove the pressure and the linear terms involving the two horizontal 
velocity components U and V in (1.2) and (1.3). The resulting relation 
between W and T (plus non-linear terms) is 

( a / & -  vV2)V2W= yV:T+L(M), (1.8) 

where 

M ,  = V.VU, Mu = V.VV, M E  = V.VW, 

and v: = a y a X 2  + ayay2. 

The two equations which relate the linear components U and V to W are 

(1.10) 

The linear parts of (1.8), (1.9) and (1.10) are just those found in the analysis 
of convective instability. Cross differentiating (1.8) and (1.5) produces 
the usual sixth-order equation in the one ‘ linear ’ variable W :  

All terms on the right of (1.11) are non-linear terms with zero average. 
On the left are linear terms except for the important horizontal-average 
temperature gradient which depends upon m. To establish this latter 
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relation we first note that the time-independent integral of (1.4) for fixed 
boundary temperatures is 

K , 8 + m  = H = fCPm+(m),, (1.12) 

where H is the constant heat flux between - the horizontal surfaces due to 
both conduction (KP)  and convection (WT). Then from the general 
integral of (1.4) one may write 

(1.13) 

where G is that part of ,R which vanishes when the time variations of W T  
vanish. G is perhaps important in the study of the onset of the aperiodic 
‘ turbulent ’ convection, but since it will soon disappear from this problem 
its explicit form need not be given here. 

At this point it is of value to non-dimensionalize the physical quantities 
appearing in the equations. This will simplify the mathematical manipula- 
tions and produce the pertinent physical parameters in the problem. Let 
V= (tc/d)V’, T= ( v ~ / y d ~ ) T ’ ,  ( x , y , z ) =  d(x’ ,y ‘ , z ’ ) ,  t =  (d2/K)t’. (1.14) 
Having made this change all primes will now be dropped. In the remainder 
of this work all unprimed quantities are non-dimensional unless it is otherzoise 
stated. Using (1.13) and (1.14), equations (1.6), (1.8) and (1.11) become 

(u-l alat - V ~ ) V ~ W  = vy T+ u - l ~ ( ~ )  (1.16) 

( a p t -  V ~ ) ( ~ - I  slat- v ~ ) v ~ w - ~ v :  w-((WT),-WT+ G}V; w 
= - V ; h + o - ’ ( a / a t - V 2 ) L ( M )  (1.17) 

where u = V / K  is the Prandtl number, and X is the previously defined Rayleigh 
number. The non-dimensional forms of equations (1.9) and (1.10) will 
be used later in the analysis but are not needed immediately. 

In the usual studies of disturbances of the state of steady conduction, 
.one seeks solutions of the form 

i W = E W, + c2 W, + 8W2 + ... , 
T = E T , + E ~ T , + E ~ T ~ + . . . ,  J 

(1.18) 

with similar expansions for the other variables, where E is a constant 
parameter. It is then required that expressions (1.18) satisfy the complete 
equations of motion for all values of E less than some maximum E. The 
coefficients of each power of E generated by substituting the expressions 
(1.18) into the equations of motion must vanish individually and the resulting 
series for each of the variables must converge if relations (1.18) are to 
represent a satisfactory solution to the problem. Stability theory is 
concerned with the solutions of the first-order equation only. For first-order 
solutions to be complete one must require that E be proportional to the 
amplitude of the disturbance and that this amplitude be infinitesimal. In 
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this finite amplitude study we will find that a similar identification of E and 
amplitude is necessary if (1.18) is to represent a solution*. 

When 
the actual forms for the Wi and Ti are substituted into (1.15), one finds an 
explicit relation between E and A. Thus 

h = A, + EX1 + c2A2 + ..., (1.19) 

where the numbers hi are integrals of functions of Wi and Ti. Such a relation 
between the amplitude and the physical parameter is to be expected. One 
might have preferred the amplitude to be given as a power series in X since h 
is actually the variable which can be controlled. However, (1.19) is a natural 
consequence of the expansion (1.18). Explicit determination of the hi is 
discussed in the following paragraphs. 

The sequence of linear inhomogeneous equations in powers of E generated 
by inserting equations (1.18) and (1.19) into equation (1.17) is 

An important point in this expansion remains to be discussed. 

1 2 ( W 0 )  = ( a / a ~ - V ~ ) ( O - ~ ~ / a t - V ~ ) V ~ W O - h O V q  W, = 0, 

9( W,) = A, 0; w, - v: ha, + a-yajat - V2)L0,, - 
Z(W2) =AlV;WI+h2 ~ q ~ o + ~ ( ~ o ~ o ) n , -  ~ o T o + G o , ~ v ; ~ o -  I 

where the subscripts n, 1 on the non-linear terms h, L and G mean that 
W, or Vn and Tl are to be substituted for W or V and T in these terms. 
The Ti can be determined from the Wi by the auxiliary equations derived 
from (1.16) 

V ;  To = (0-l d / d t  - V2) W,, 
(1.21) 

0 J 
with similar expansions for Ui and Vi. Each of the Wi must satisfy the 
boundary conditions for the vertical velocity, each of the Ti the boundary 
conditions for the temperature fluctuations. The various boundary 
conditions of the problem will be discussed in the next section. 

The first of equations (1.20) is the classical Rayleigh stabilityequation, and 
9 can be termed the linear constant-coefficient Ray leigh operator. Assume 
tentatively that it is solved for W, (normalized) and A,, and that from the 
auxiliary equations To, [I,, V,, are also known. The second of equations 
(1.20) is a linear inhomogeneous equation for W,. The inhomogeneous 
terms depend on the known forms of Wo, To, U,, V, and the unknown 

* V. S. Sorokin (1954) attempted to solve the second order equations by assuming 
that E - (& - z/h0)l''. His neglect of the important terms containing @/@?a in the 
basic equations prevented him from obtaining any quantitative finite-amplitude results. 
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number A,. The solution of this equation for Wl will be the sum of a 
homogeneous solution plus the particular integral generated by these 
inhomogeneous terms. Three difficulties arise at this point. ( 1 )  The 
part of the homogeneous term which has the form of W, will produce a 
secular (non-periodic) response in the particular integral-a solution which 
has no physical counterpart ; (2) that part of the homogeneous term which 
satisfies the boundary conditions will contain an arbitrary constant ; ( 3 )  a 
part of the inhomogeneous term may satisfydp( W )  = 0 but not the boundary 
conditions (i.e. it will differ from W,) and will also give rise to a secular 
response. The last occurs nowhere in our analysis because the inhomo- 
geneous terms themselves always satisfy the boundary condition. The first 
two complications require that a method be adopted which resolves the 
indeterminacy and which makes the €-equations a soluble iterative sequence. 

It is to require (1) that the hi 
be evaluated so as to eliminate the ' resonant ' inhomogeneous terms, for 
example 

We have found only one such method*. 

Xl(W0V~ Wo)m = (W,V~h,,)m-a-~{w~(a/at-V2)Loo), ,  (1.22) 
- 

and (2) that ( W, W),  =: E, i.e. that E be proportional to the amplitude of that 
part of W which has the form W,. Then from (1.18) all Wi (i > 0) must 
be orthogonal to W,, though not necessarily orthogonal to each other. The 
latter requirement removes the arbitrary constants of the homogeneous 
parts of the Wj equations. 

T o  eliminate the resonant terms in the second-order equation, we must 
have 

A,( WOO? W,), I = -A1( W, v; Wl)m - 

(1.23). 

Higher X i  generated from (1.20) by the first requirement above are 

1 n = o  

- n+l=0 isz "w,),- m+ Grid Wo v; w.-~rL+l+2~lm}. (1.24) 

A formal technique for determining the amplitude and distortion of 
a disturbance as a function of the external parameters is now complete. 
Can one determine the range of h in which a series solution terminated 
after a term ei is a good approximation to the whole series for W ?  The 
best we can do to test the validity of a limited solution is to compare the 

* Recently we have learned that an analogous method was proposed by Lindstedt 
(1883) to obviate similar difficulties which arise in problems of celestial mechanics. 
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amplitude of Wi to E ,  the amplitude of W,. If this ratio exceeds 0.1, for 
example, we can be fairly sure that an additional function Wc+l must be 
computed to keep errors in distortion below 10~/o. However, the important 
energy and heat transport terms are proportional to products of W and T. 
Hence the error in these terms will be much smaller than the error of Wand T 
themselves. Examples of determination of the errors in limited solutions 
are given in the following section. 

The proposed technique cannot answer all the explicit questions raised 
in the Introduction. If a solution to the stability problem, W,, is independent 
of time, then none of the equations (1.20) can lead to time dependence. 
If there are many solutions to the stahility problem, then the equations (1.20) 
give as many answers. T o  determine which of these answers is realized in 
an experiment we must separately investigate their ' relative stability '. 

Therefore, we do not present this technique as a unique statement of 
the finite amplitude problem. Several alternative approaches which also 
answer some but not all of our questions are discussed in the Conclusion. 

The following section discusses the consequences of this +expansion 
with generating functions based on the simplest solution of the Rayleigh 
problem. 

2. ANALYSIS FOR THE TWO-DIMENSIONAL CASE WITH FREE SURFACES 

The first step in a determination of the effects of finite amplitude in 
equation (1.20) is the resolution of the stability problem. Pellew & 
Southwell (1940) have made a most comprehensive study, which will 
be only briefly outlined here. They investigate the first of equations (1.20), 
2(W,)  = 0, to determine W, and A, for three different sets of boundary 
conditions on the velocities. In every case the boundaries are perfect 
heat conductors, that is, the fluctuation temperature vanishes there. The 
conditions at a free boundary are 

and are a consequence of the divergence relation (1.3) when the boundary 
cannot support a stress. The conditions at a rigid boundary are 

and are a consequence of the divergence relation when all velocity components 
must vanish at the boundary. 

The assumption made in solving the Kayleigh problem is that the field 
of motion is separable, i.e. 

and 

where the separation parameter a is the effective wave-number of the 
disturbance in the horizontal plane. (In what follows we treat +(x,y) as a 
normalized function.) Pellew & Southwell have shown that this assumption 
is justified only if the horizontal plan-form of the motion consists of regular 
' close-packed cells ' at whose lateral boundaries the normal derivatives of 

w = a2w/az2 = T = 0, (2.1) 

w = awpz = T = 0, (2.2) 

(2.3) } 
Wo = +(X,Y)F(z)G(t), 

v: +(x,r) = - a27r2 +(%Y), 
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the temperature and velocity fluctuations vanish. The plan-forms which 
satisfy these requirements are the two-dimensional ‘ roll ’, the general 
rectangle, the equilateral triangle and the hexagon. Hence a characteristic 
value A, will have associated with it an infinite number of possible 
characteristic functions, all with the same a. Pellew & Southwell correctly 
suggest that this degeneracy in the first-order theory is removed by ‘ higher- 
order ’ effects, though they were apparently under the impression that the 
hexagonal plan-form was the preferred motion in all experiments. 

Another important contribution of Pellew & Southwell to this first-order 
problem is their proof that all oscillatory solutions decay. Hence maintained 
convection is initiated as a steady motion and “limiting conditions of 
stability are in fact obtained when all time variations (in 9(W,)  = 0) 
are made zero ”. 

Therefore, with the use of (2.3), the equation 9( W,) = 0 becomes 
(a2/az2 - cc27T2)3 W, + A, a2772 W, = 0’ (2.4 1 

which is a linear sixth-order equation with constant coefficients. 
general solution is 

Its 

:3 

i = l  
W, = #(x ,y)  2 (Aicosh2piz+Bjsinh2pjz), 

4 4  = E%*{ 1 - (h,/~~2n2)1’~w~), 

(2.5) 

(2.6) 

where Ai and B, are arbitrary constants and 

where the wi are the three cube-roots of unity. 

generates the characteristic functions 

where n is an arbitrary integer, and the characteristic values are 

The lowest value of is 27n4/4, and it occurs for u2 = 8 and n = 1. The 
case n = 1 is our primary concern, since, before the modes corresponding 
t o  higher values of n can occur, the mode corresponding to n = 1 has 
grown to finite amplitude, markedly altering the basic temperature field. 

Application of the conditions for two free boundaries to (2.5) and (2.6) 

W, = A #(x, y )sin nnz, 

A,, = %-4(n2 + a2)3/42. 

(2.7) 

(2.8) 

For two rigid boundaries the characteristic function becomes 
3 

1 
W, = #(x,JJ) 3: Aicosh2pi(z- i), (2.9 ) 

where 2.2 = f 1 at the boundaries and where A, and A, are related to A, 
by the conditions 

3 3 

1 1 
2 Ai cosh pi = 0, 2 pi A, sinh pi = 0. (2.10) 

The pi are found from (2.6) once A, and cc are known. The relation between 
A, and a has been determined numerically by Pellew & Southwell (1940, 
p. 377). The lowest value of A, is 1707.8 for cc2 = 3*13/rr. 

For one rigid and one free boundary the first characteristic function 
is the second, or ‘odd’ mode of (2.9) with 2.2 = 1 at the rigid boundary 
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and 2x = 0 at the free boundary. Pellew & Southwell found the minimum 
eigenvalue to be A, = 1100.65 for u2 = 2*68/.rr. 

The primary conclusion drawn from the first-order equations is that 
for A < A, all infinitesimal disturbances to the purely conductive state decay 
in time. What will be the equilibrium amplitude of the preferred 
disturbances for A A, ? 

Finite amplitude solution .for rolls 
In the remainder of this section we will study the solutions generated 

by (1.20) for the very simplest case, that of the two-dimensional roll with 
two free boundaries. Many, but not all, of the properties of the other 
solutions to this problem are exhibited in this case. However, it must be 
borne in mind that neither the two free boundaries nor the roll can be 
realized in practice. 

A complete solution to the first-order equations for strip plan-form 
and two free boundaries is 

W, = 2 cos r u x  sin m, 

T, = (1 + u2)2(2.rr2/u2) cos mxx sin nz, 

U, = - (21.) sin ~ u x  cos n-2, 

1 
I 

(2.11) 

v o = o ’  1 A, = n4(1 + t12)3/u2, 

from (1.20), (1.21), (1.9), (1.10) and (2.1). 

u2 = +. 
hoo, Lo, and A, must be determined from (2.11). Now 

As noted previously the lowest value of A, is 27.rr4/4 and occurs when 
Before solving the second-order equation for W,, the quantities 

independently of the choice of u. Also 
a 2  a 2  L = - (V, .  VU,) + - (V,. VV,)-  qv , .  OW, = 0. 

O0 - axax ayaz 
Hence from (1.22) A, = 0. We shall find that A, = 0 for all symmetric 
solutions to the first-order equations. However, the conclusion that 
h,,.= Lo, = 0 is true only for rolls and only with two free boundaries. 
This fortuitous vanishing of all zero-average advection by the first-order 
solutions leads to 6p( W,) = 0 ; hence W, = U, = T, = 0 from (1.20) and 
(1.21). Therefore h,, = kl0 = Lo, = L,, = 0, and the third-order equation 
of (1.20) becomes 

=qWw,) = ~ 2 ~ ~ ~ , + t ( ~ , ~ , ) , - ~ , ~ o ) V ~ ~ o ,  (2.12) 
where A, is given by 

xz(wOv? W 0 ) m  = - “Wo To),- Wo ~cJW,V,2 Wolm 

A, = +2( 1 + a2)2/u2. 

(2.13) 

(2.14) 
from (1.23). From (2.11) and (2.13) 
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Therefore (2.12) becomes 

'76 W, -A, 0: W, = - r4( 1 + c ? ) ~  cos TUX sin 3772. (2.15) 

Before investigating the distortions of the roll form generated by (2.15), 
the implications of our first finite-amplitude results, equation (2.14), will 
be studied. From (1.19), (1.18) and (2.11), to this third-order approxima- 
tion, 2 = (X-h,,)/X, and 

(WT),, = €Z( w, To),, = 2(h - ha). (2.16). 

Also, from (1.13) in its non-dimensional form, 

p/p, = 1 + 2( 1 - A,/h)cos 277z. (2.17) 

In (2.17) the distortion of the mean temperature gradient is determined 
by products of zero-order functions only and requires that for A > 2h, 
the gradient should become negative in the mid-regions of the fluid. 
Equation (2.16) asserts a linear relation between the convective heat 
transport and A. (Note that this relation is independent of u.) That the. 
observed heat transport shows just such a linear relation from A, to the 
second transition at 10h, suggests that this third approximation provides 
an adequate description of the field of motion throughout the entire 
range of steady convection. However, this is not the case as we shall now 
establish by the investigation of higher order terms. 

A,-approximation 
The solution of (2.15) for W, is 

W, = C,  cos TUX sin 3772, 

cw = 774(32 + a213 - A, a2 . 

where 
ny 1 + U2)2 

Hence from (1.21) and (1.9) 

(2.18) 

T, = C, cos m x  sin 3772, U, = - (3/a)C,  sin TUX cos 3772, (2.19) 
where 

C, = (7~/4)~(3~ + a2)2Cw. 

Therefore the first distortion of a finite-amplitude roll does not affect the 
horizontal plan-form, but only the vertical structure. The addition of the 
term sin 377z to the first-order solution increases the amplitude of W and T' 
near the boundaries in keeping with the increased gradients near the 
boundaries (see equation (2.17)). 

This rather straightforward iterative analysis will now be extended to 
determine A,, A,, A, and A, and the accompanying Wi, Ti, q.. 

From (2.11) and (2.19) one finds that 

VT(h,, + h,,) = C,(a)cos 2nax(2 sin 277z + sin 4772) 

and u - ~ V ~ ( L , ,  + L,,) = U-~C~(IX)COS 277ax(2 sin 27rz+ 3 sin 4772). (2.20) 
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Since Wo is orthogonal to the expressions (2.20), and since WoTl = WITo = 0, 
then A, = 0. Therefore 

2'( W,) = cos Z~crx[C,(a, u)sin 2n-z + C4(a, u)sin 4~x1. (2.21) 

W, and T ,  are of the same form as 2( W,), but with different coefficients 
C(a,u),  and 

U, = sinZnax[C,(a, u)cos2nz+ C6(a, u)cos4nz]. 

I n  order to determine A, one must construct h03, h30, Lo, and L30 from (2.1 1 )  
and (2.21).  This leads to 

-- 

V:(hO3 + h30) = cos nax(D, sin 3rrx + D, sin 5nx) + 
+ cos 3nax(D, sin nz + D, sin 3nz + D, sin 5nz), (2.22) 

with an identical form for V2(Lo3 +L30) differing only in the coefficients 
D ( M ,  u). Therefore 

1 Wo v? (h03 hao)lm = Wo v2(Lo, + L3o) lm = 0 (2.23) 

and 

= -g?T,+2n2(1 +a2)2a-2Cw. (2.24) 

Since A, is an integral of zero-order and second-order functions only, it is 
not dependent upon u. Hence, to the fifth order, u does not influence the 
amplitude of the convection. Indeed the largest part of the a-dependent 
inhomogeneous term in the equation for W,, namely, u-1V2(Lo3 +- L,,), 
is smaller than the corresponding term in V~(h,,,+h,,) by a factor 
a2/[2n2(1 + ~ ) ~ u ] ,  + 10-2/u. Hence in the determination of W, and A, 
these higher-order momentum advection terms will be neglected, 

X,-appYoximation 
Proceeding as above one finds that 

W, = cos na(El sin 3nz + E, sin 5nz) + 
+ cos 3na(E, sin nz + E4 sin 3nz + E5 sin 5 m ) ,  (2.25) 

As for previous Xi with odd i, A, = 0 since Wo W, = Wo T ,  = W, To = 0 
with a similar form for T4 where E = E(a,a). 

and [W,(h,, + = 0. Therefore 

- - -  
-- -- 

A6 = (W0v?W0)~1~(W0T4i- W4T0)(W0V? W O ) f ( W 2 T O +  W0T2)W0v? W Z +  

+ Ut, To WOO: W4 - ( ~ / n ) ~ (  1 + a2)-' [ T,Vf(ho, + h30) + 
T3V?(hoz h20)1}~0 (2-26) 

where use has been made of the facts that (Th),  = 0 and To = No Wo 
in order to simplify the last term. 

Here for the first time the Prandtl number can have an effect upon 
amplitude, since the coefficients in W, and W4 are functions of u. 
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We are now able to investigate the ranges of A in which these various 
solutions W,, W3, W, first become significant contributors to the field of 
motion. 

For the initially unstable disturbance A, = 27n4/4 and cc2 = 4 and 
from (2.14), (2.18), (2.19) and (2.24) A, = 9.rr2/4 and A, = -0.1248 .I. -9 .  
Then, to this A,-approximation, from (1.19) 

Equation (2.27) tells one that 2 becomes imaginary when 
A - A, = - aAi /A4  + 1.54,. 

(2.27) 

(2.28) 

Hence the range of A in which this A,-approximation is valid is certainly 
less than 1*5h,, while the range in which the previous A,-approximation is 
valid must be smaller still. When A -A, = 1.5A0, = - - iA.2 / A, = 2(A-&)/Az 
from (2.27) and (2.28), and e2 is twice as great as the amplitude predicted in 
(2.16) for the A,-approximation. Therefore the hope that the A,-approxima- 
tion would be valid throughout the laminar convection range is unjustified. 
It is now clear that the distortion of the initial disturbance must play a 
significant part in determining the observed heat transport. 

The A,-computation from (2.26) though tedious, has proved of 
considerable value in explaining both the observed relation between 
A and (WT), and the nature of the €-expansion. Since A6 is a function 
of u, the various coefficients, C(u,a), D(u,u) ,  E(a,u) ,  entering into it 
have been computed for u2 = + at three values of u. For u = 0.8, a value 
appropriate for a gas, For u = 8, a value appropriate 
for water, A, = 2-30 x w 3 .  It would be 
necessary to include the small neglected a-term in W, in order to decide 
whether the effect of a on heat transport is just very small or whether it 
vanishes completely. We will return to the effects of u in the following 
section. Here we will study amplitudes and distortions whenh, = 2-30 x 
corresponding to the value of u for water. 

In order to determine E as a function of A, to the A,-approximation, 
from (1.19) one must solve the cubic equation 

(€2)3A, + (€2)2A, + €9, + h, - A = 0, (2.29) 

for A, = 27rr4/4, A, = 9914, A, = - 8 ,  A, = 2.30 x 10”. The heat transport 
to this same approximation is 

= 2.31 x 
For u = a, A6 = 2-29 x 

= 2((W,) , , (1+ 7.15 x 10-7~4) (2.30) 

from (1.18), (2.18) and (2.19). In  figure 2 we have plotted the total heat 
transport, divided by its value at A, against A/& for the A,-approximation, 
for the A,-approximation from (2.27), and for the A,-approximation from 
(2.16). (ZANL) will be 
discussed shortly. 

The two additional curves labelled u2 and 
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Eflects of h6 and zero-average non-linear terms 
Perhaps the most interesting aspect of the curve for A, is that it has 

brought the heat transport back very nearly to the &-curve in the range 
A, < h < 3h0. This alternating character of the various approximations 
to h makes the observed linear relation between heat transport and h more 
understandable. One can anticipate that the &-curve, like the A,-curve, 
will diverge to the right at some h greater than 3h,, while the X,,-curve, 

5 

4 

3 

X / X O  

2 

I 

0 
0 2 4 6 8 10 12 

H ( X ) /  H ( Xo) 

Figure 2. Heat transport vs Rayleigh number for the second, fourth and sixth 
approximations, for the fourth approximation with variable az, and for the 
sixth approximation without zero-average non-linear terms. 

like the &-curve, will be more nearly parallel to that for A,. This alternation 
also suggests that a more satisfactory formulation of our problem should 
be sought permitting an expansion h = A(€) in some monotonic sequence. 

The percentage error of the &-curve at various h can be estimated by 
comparing the magnitude of the various terms in the expansion of U'T 
(or equivalently of /3//3,n). From (1.18), (1.13), and the preceding equations 
for Wiand Ti, 

--- 
%?? = e 2 { m o  + 8((W,, + W, To) + e4( Wo T4 + W, T, + W, To) + ...) 

= ez( Wo T0),{2 sin2 7rz + 2( 1.098 x lO-,)sin m sin 37rz + 
+c4[1*43 x 10-6sin237rz-2*22 x 10-5sin7rzsin3nx+ 

+2-38 x 10-5sin7rzsin5nz}. (2.31) 
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Therefore 

(Em),- WT _ -  P - l +  

- ism 

= 1 +.y(wo ~~),,p{(i -5.49 x 10-3€2+ 1.11 x 10-5~4)cOs2~~+ 

+ (5.49 x 10-3~~-2*3 x 1 0 - 5 ~ 4 ) ~ ~ ~ 4 ~ ~ +  1.26 x 1 0 - 5 ~ 4 ~ ~ ~ 6 ~ ~ +  ...). 
(2.32) 

For h = 3h0, equation (2.29) has the root c2 = 57.7, whence 

suggesting that at this value of X the error due to neglected terms is less 
than 2%. This error is of course much smaller at smaller A, but will rise 
rapidly for h > 3h0. 

= 1 +1*301[0*801 C O S ~ T . Z + ~ . ~ ~ ~ C O S ~ T Z + ~ * ~ ~ ~ C O S ~ T Z +  ...I, (2.33) 

\ \  

-0.4 
Figure 3. Comparison of the mean temperature gradients predicted by the second 

and sixth approximations for free rolls at A = 3&. 

An interesting consequence of relation (2.32) is depicted in figure 3. 
The curves p//3, for A, from (2.17) and for A, from (2.33) at h = 34, are 
drawn from a boundary to the middle of the fluid. Despite the negligible 
change in heat transport (given by the gradients at the boundary), the 
distortion of the finite amplitude disturbance has prevented the gradient 
from becoming negative. This is probably a property of the convection 
at all A, but no general proof that /3]Prn 2 0 has yet been found. 

Another matter of some interest is the effect of the zero-average non- 
linear terms h and L(M) on the transport of heat. One can easily recompute 
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A,, A,, and A,, neglecting h and L(M), and compare the resulting transport 
with that found in (2.29) and (2.30). From (2.13) and (2.24) it is seen 
that A, and A, are unchanged. However, a redetermination of W, and T4 
leads to = 1.44 x from (2.26). A new solution of the cubic (2.29) 
with this value of A, determines the heat transport curve labelled A,(ZANL) 
in figure 2. One concludes that, to this approximation, neglect of the 
zero-average non-linear terms increases the amplitude of the predicted 
heat transport. 

Amplitude effects on the horizontal wave-number 
Up to this point in the calculations we have considered only the growth 

process of the free roll when cc2 = +, its optimum value for a lowest A,. 
However, it is improbable that the distortions of the growing disturbance 
are not accompanied by a change in the basic horizontal wave-number. 
Indeed the expressions for A,, A,, and A, (see (2.11), (2.14) and (2.24)) 
have been written as explicit functions of u2 so that we may investigate the 
effects of changing u on the heat transport. 

We have as yet no criterion to select the physically realized finite 
amplitude solution from the manifold of steady solutions permitted by the 
equations. In first-order theory the criterion is to find the lowest value 
of A,, for this disturbance is the ‘ first ’ to grow. But for A greater than 
this lowest A, a variety of disturbances of different u2 could grow, each 
corresponding to different A > Amin. In  a following section we shall 
establish a ‘ relative stability ’ criterion to select the realized solution. 
Here, we shall investigate one extreme, namely, that solution which leads 
to the maximum heat transport. 

T o  the A,-approximation the heat transport is a maximum for minimum 
A,, i.e. at u2 = 4, for all A. However from (1.19), (2.14) and (2.24), to the 
A,-approximation, 

where 
7T4(1 + q 3  v2(1+m2)2 A - (1 + .2)2 (32+ .2)2 + 2(1+ u2)2 

( 3 2  + a93 - (1 + m2)3 - 4u2 3 4 -  2 2  A, = , A2 = 
a2 

We seek that u2 = .,(A) which leads to a maximum (m),. From (2.34) 
this extreme relation is 

- ax0 (2.35) 
a -  aK 2K - (WT), = 0 = - - 

acc2 am2 2(A -A,) - ( WT), @ ’ 
where K= Ai/lA41. 
close to (Ao)min where u2 will be close to 8. We let u2 = 4 + A ;  then 

An explicit solution for u2 first will be sought for A 

and 

F.M. 

K = 6A,( 1 - aA + bA2 + ...) 

A, = A,(l +$A2+.. .) ,  

(2.36) 

Q 
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where A,= (Ao)min, u = 0.621 and b + 1.782 from (2.34). Hence 

(WT), = 6A,[l- (1 - $$)1'2 + AA - BA2 -I- ...I, (2.37). 
where 

Then equation (2.35) for the extreme u2 yields 

at A = 2A, for example, A .i. 0.0591 and 

(WT),li,z=k+a = 1*00672(WT),I,,=,, 
Hence, for this extreme solution, a2 does change appreciably even in the 
limited range of A in which the A,-approximation gives an adequate 
description of the motion. However, the change in heat transport is quite 
negligible and tells one that this change in u2 plays an unimportant role 
in the energetics of our probem. 

Though certainly beyond the useful limit of the A,-approximation, the 
'end point ' of the A,-curve has been computed as a function of u2 to 
complete the extreme (WT),-curve labelled (u2) in figure 2. At this end 
point 

and 

A = A/2B; (2.38) 

A = *Az/Ih,l +&= himag, 

- 
( WT),l A= n irrlag ' '(Ximag - '0). (2.39) 

Hence, from (2.35) for the extreme (m), as a function of a,, we have, 
using the values of Airnag and (WT), in (2.39), 

aKpcr2 + 4 ax,/au2 = 0. (2.40) 
It is seen that this condition for maximum heat transport at the end point 
is identical with the condition for minimum Ailllap from (2.39). A plot of 
Ailrtag against cr2, using A,, A,, and A, from (2.34), leads to the (A,H)-point 
given in figure 2. 

We have now progressed about as far as is practicable in the €-sequence 
for the simplest of the solutions to the Rayleigh problem. The  two important 
properties of the non-linear terms which control the amplitude of the 
steady disturbance have been exhibited. These are the distortion of the 
disturbance from its initial form and the distortion by the disturbance of 
the mean temperature field. This latter plays the dominant role in 
amplitude determination for the free rolls. In  the following section we 
shall establish the relative importance of these two effects for the general 
rectangle and the hexagon. 

__ 

The  value of u2 at this minimum AilllaK is 27/40. 

3. ANALYSIS FOR THE THREE-DIMENSIONAL CELLULAR MOTION 

The greater complexity of the general rectangle and hexagon plan-forms 
However, the prohibits an analysis as extended as that for the rolls. 
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non-vanishing of the first zero-average advection terms causes even the 
A,-approximation for these plan-forms to exhibit many of the properties 
found for the roll-cell in the A,-approximation. 

General rectangle 
We start this analysis with the general rectangular cell with two free 

boundaries. A complete solution to the first-order equations is 

i (3.1) 

W, = 2112 cos nlx cos nnzy sin nz, 

To = No 2112 cos nlx cos nmy sin nz, 
U, = - 211210(-~ sin nlx cos nmy cos nz, 
Vo = - 2212m~-~ cos nlx sin nmy cos nz, I 

A, = n4( 1 + E ~ ) ~ / C ? ,  

From (1.5), (1.8) and (3.1), 

No = n2(1 + a2),/a2, 12 + m2 = u2. 

0: h,, = - 8n3N0 a-2m212(cos 2nlx + cos 2nmy)sin 2nz, 
Lo, = 8n312m2a-4( 1 + cx2) [cos 2nlx + cos 2nmylsin 2nz. 

Hence A, = 0 as before and, from (1.20), 

(3.3) 

The solution of (3.3) is 
W, = (C,, cos 2nlx + C,,, cos 2nmy)sin 2nz, (3.4) 

where 
8n3a-2m212 No{l + 4 u - V +  l2))i(1 + a')>>, 

= cml. 64n6( 1 + 12)3 - 4n2l2A, Czm = - 

From (1.21) and (3.4) 

where 
TI  = (DLm cos 2nlx + Dml cos 2nmy)sin 2nz, (3.5) 

From (1.9) and (1.10) expanded for U, and V,, 

so that 
s(Mz)oo/+ - a(M,)oo/ax = Q,  

(3.6) 
U, = - ( Clm/l)sin 27rlx cos 2nz, 
V,  = - ( Cml/m)sin 2nmy cos 27rz. 

T o  determine the first finite amplitude results for the general rectangle 
Here we must construct A, from (1.23). 
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while from ( 3 . 1 ) ,  ( 3 . 5 )  and (3.6) the lengthy forms of h, and Lij lead to 

and 

Therefore 

and from (1.18) and (1.19) this first effect of E on heat transport is 
h2 = X2(u, m, 1 )  = BNo(1 + D +  Clu), (3 .9)  

- 
(WT), = function of (0, I ,  m )  = 2@ -A,) 

1 +D + c/o a 

(3.10) 

For the special case of a square cell Z 2  = m2 = &a2; from (3.4),  ( 3 . 5 )  and 
( 3 . 8 )  . .  

l + D + C / a =  I +  

where x= ( l+$a2) / (1+a2) .  
For the ‘ limiting rectangle ’ 1 -+ 0, m2 + a2, we have 

that is, W, = U, = Vr. = 0, from (3.4) and (3.6), but 

from (3.5). 
Figure 4 is a plot of $(WT),/(A-&,) as given by equation (3.10), for 

values of I/m between these two extremes, with a2 = 4, and for several 
values of (T. The dependence of (WT), on a2 will be discussed shortly. 

Finite amplitude effects 
Perhaps the most important aspect of these finite amplitude effects is 

that the heat transport for the limiting rectangle does not coincide with that 
for the roll. Neither rolls nor long rectangles can satisfy the (distant) 
lateral boundary conditions in real convection. However, a long rectangle 
is certainly the more realistic limiting form to compare with squares and 
hexagons. 

A second aspect of this initial amplitude convection is that squares 
transport more heat than any other rectangle when u 0.8*. Most gases 
have a value of (T very close to this critical value and may exhibit a far less 
decided choice of plan-form than liquids. However there is some evidence 
that these strong effects of a on heat transport disappear at large Rayleigh 
numbers (Malkus 1954 a). 

As for the roll plan-form, one expects that the value of a2 can change 
as the rectangle grows in amplitude. We investigate this effect for the 

* When u < 1 (cf. (T + 1/40 for mercury), the radius of convergence of the 
A = A(€, 0-1) series which we have evolved is very small. In such a case it is better 
to non-dimensionalize V by writing V = W / d  and obtain the series A = A(E, 0). 

l + D + C / a =  l + + ;  (3.12) 

T, = - (No/2rr)cos 2rrZx sin 27rx 

- 
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case of the square and, again arbitrarily, seek that value of cc2 which leads 
to a maximum value of (m), at A 3 (Xo)min = A,. From (3.10) and (3.11), 

For values of A near Ao, cc2 will be near 4. 
A, = A,(l+4A2/3+ ...), 

We write A 2 G?- 4, whence 

x = g(l-4A/15+8A2/45+ ...), 
- 2(A-A,)  [1-4A,A2/3(A-A,)+ ...I 

( W q n L  = - 
F (1 -c4+dn2+. . . )  ' 

(3.14) 

I \  u =  .45 

0-= . I  

0.01 I I I I I 

j o . 0  0.2 0.4 0.6 0.8 f l . 0  
/( L l M f T l N G  ) 

RECTANGLE 
L 
m 
- L E Q U A R E )  

Figure 4. Heat transport for the general rectangle with a2 = + at several values of c. 

where 

c 2 -  loo (0-7124 + 0 . 0 6 4 5 ~ ~  + 0-26740-~), 
473F 

473 F 
d = -  loo (0-7SO0 + 0.09270-~ + 0.2900~r-~). 

Therefore a( m),,/aA = 0, when the optimum value of A is 
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- 

and (3.15) 

For B = co, c .i. 0.1245 and d + 0.1362. VIThen A = 2A,, Aopt = 0.0428 and 

[( WT)m]opt = 2(A - A,)( 1 + W o p t ) / F .  

[ ( ~ ) m ] o p t / ( W T ) m l , l , t  = 1.00267. 

For u = 1, c + 0.1561 and d + 0.1589. When A = 2A,, Aopt = 0.0532 and 
the above displayed ratio is 1.00415. Hence, for those values of 0 for which 
the square cell transports the most heat, this transport is only negligibly 
increased by an optimization of a,. However this optimization causes 
a 10% increase in u2 for A = 2A0. 

The optimum a2 equals 4 for the limiting rectangle since from (3.12) 
A2 is independent of u2. 

The range of A in which these A,-approximations for the general 
rectangular cell are useful is apparently even more restricted than it was 
for rolls, i.e. A, < A < 2A,. This was established by the extremely tedious 
computation of A, for the square with u2 = +. It  was found that here 
A, i 0.185, indicating that corrections due to A, become important for 
A-A, > O.5Ac. 

A, for hexagons 
Before attempting further interpretation of these results we will 

investigate the initial finite amplitude convection of the hexagonal 
plan-form. Past experimental literature gives one the impression that 
Rayleigh-like convection is realized only as hexagons. However these 
observations of plan-form were made with rigid bottom and free top 
boundaries. The one experimental study of plan-form made with 
symmetric boundary conditions will be discussed shortly. 

The complete solution to the first-order problem for a hexagonal 
plan-form and two free boundaries was first given by Christopherson (1940), 
and is as follows 

2 
3L 213 

2nx 2ny 
2 cos - cos - + cos Wo = - nz = - +, sin nz 213 { d3L 3L 

i To = (2/li3)N0 +, sin nz, 

2 . 2nx 2ny U - - -sin- cos - cos nz, 
u d3L 3L 

213u 3L ' 3L) 

0 -  

2vx 2ny 4ny5 
sin -- +sin - cosnz, 

} (3.16) 

where L = 4/3u is the non-dimensional length of one side of the hexagon. 
Averages over the hexagon can be taken over the region 0 < x < 213L/2 
and 0 < y < L/2, which covers one-twelfth of the plan-form and is the 
smallest symmetric segment. 
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Possible variations of cc2 from its initial value a2 = Q have played such 
a small role in the initial heat transport of the general rectangle that we 
simplify the following analysis by choosing cc2 = + from the start. Then 
from ( l S ) ,  (1.8) and (3.16), 

0: h,, = - &7-3N0(4, + +,)sin 2772 1 

Lo, = (3n2/2)(dl + &)sin 2 m ,  
(3.17) 

where 

Here, for the first time in our study, h,, and Lo, have a horizontal dependence 
which is not orthogonal to the plan-form of W,. This unusual property 
of the hexagonal solutions will be important in the case of one rigid and 
one free boundary, where due to  the asymmetry the x-dependence of IZ,~ 
and Lo, and the x-dependence of W, are not orthogonal. However in this 
case of two free boundaries A, = 0, since (sin nx sin 2~rx),,~ = 0. Therefore, 
from (1.20), 

2( W,) = +n3No [ (1 + 3 /u)4, + (1 + 11/3u)+,]sin 2772, (3.18) 

with the solution 
W, = - ( 9 ~ 3 / 4 n ) ( C l ~ , + C , + , ) s i n 2 ~ ~ ,  (3.19) 

where 
1 + 11/30 c -  1 +3/0 

- 1331/4-3Ac/n4 
c -  - 729/4-Ac/n4’ 

From (1.21) and (3.18), we have 

C 2 -  - 4, sin2nx. (3.20) 
3u 1 

The comparison of W, and T,  for the hexagon with W, and Tl for the general 
rectangle assures one that the u-dependence of these initial finite amplitude 
distortions is similar. Therefore, a determination of the hexagon A, for 
u --f ~0 will permit an adequate coniparison of hexagonal and general 
rectangle initial heat transports. Consequently the computation of A, 
from (3.7) is considerably simplified, for we need not compute Lo, and L,,. 
Then 

[Wo V:(h,l +h,,)l, = - (~2~2/N,)[T,(h,l + h o ) l m  (3.21) 

from (3.16). Now (a), = 0 in general, and therefore 

(XIpn = 0, (T1hoo+ T,(h,,+h,,)], = 0, etc.; (3.22) 
hence 

[Wo v:(h,l+ ~ 1 , ) l m  = (a2772/No)(Tl hoo)m* 

From (3.22), (3.21) and (3.18), 
3 1 1331 27 
-i ii (T C, - E)} = - T ~ C .  (3.23) 
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Then from (3.7), (3.23) and (3.16) for u = co, 

A, 5 $No- ( T l l ~ o o ) ~  = iNO(1 +Q(C),=,j = (9n2/4)(1.379). 
The initial finite amplitude heat transport for the hexagon from (1.8)> 
(1.19), and A, above is (WT) ,  = 1*45(A-A0). In  figure 4 we see that this 
heat transport is smaller than that due to the square and larger than that 
due to the limiting rectangle. 

- 

Mixed horizontal plan-form 
There is yet another class of solutions to the first-order equations which 

may grow to finite amplitude, viz. the class of all possible linear combinations 
of the individual plan-forms. We will consider only the single case of a 
square (5') and a general rectangle (G). The first-order solution will be 

(3.24) 
where 

Wo = 2/2(4s i Y&)( 1 + r2)-1'2 sin nz = ~ ' 2 4  sin nz, 

- 
$is = 2 c o s ( n a x / ~ 2 ) c o s ( n a ~ / l i 2 ) ,  4 2  = 1, 
$iG = 2 cos nlx cos rimy, 12+m2 = LX,, 

and 0 < r < co is a free parameter determining the fractional contribution 
of +G to the total plan-form. In  the case a2 = 8, u = 00, we can quickly 
determine A, by the method used for the hexagon (see equation (3.23)). 
From (3.24), 

hoo = .rrNo(l +Y')--I{~~~(S) +y2hoo(G) + 
+2r(l  T 17 m)cos(Q _+ Z)nxcos(+ & m).rrysin2nzj. (3.25)" 

Hence 
Wl = (1 + Y ' ) - ~ { W ~ ( S ) + Y ~ W ~ ( G ) +  

+ ( ~ Y B / T ~ ) ( ~ + A ) - ~ C O S ( ~  & l).rrxcos(~ & m)~rysin2nz) (3.26). 

TI = (1 +~2)-1{Tl(S)+r2Tl(G)-(2rB/n)~~~(~ f l)nxcos(* +m)nysin2nz) 
and 

where 

Then 
A = ( + & 1 ) 2 + ( * + m ) 2 ,  B = No(1Tl~m)(4+A)2/[(4+A)3-AcA/7r4].  

Finally, from (3.24), (3.9) and (3.27) 

where 

Hence A, has an extremum with respect to t at 

where 

This extreme is a maximum if 2A2(G)A,(l) > Ag(l)+Ai(G). Comparison 
of (3.9) for A,(G) with CT = co, a2 = 4, and (3.28) for h2(I)  establishes that 

A, = (1 + y2) - ' {A2(S)  + 2r2A2(I) + r4A2(G)}, 

A,(]) = &No + tB(1 T I T  m). 

(3.28) 

(Y2)0Pt = [h,(S) 42(0I/[A2(G) -A2(1)17 

(A2)OPt = [A2(S)AZ(G) -A;(I)I/[Am +A,(G) -2AzV)I. (3.29) 
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this inequality is true for all values of 1 = (+ -m2)1'2. We recall that an 
increase in A, decreases the heat transport. Therefore, as one might have 
anticipated, this mixture of first-order plan-forms reduces the initial finite 
amplitude heat transport. 

Before a formal attempt is made to determine the physically realized 
solution from the vast degenerate set we have constructed, a relevant 
experimental study will be discussed. I n  1935 Schmidt & Milverton 
made optical observations of the spacing of convecting cells between two 
rigid boundaries. Shining a collimated beam of light horizontally through 
water (u = S )  they detected a spatial oscillation in intensity due to the 
density variations in each cell. The  patterns obtained by rotating the 
beam through 180" in the horizontal contain one maximum in the spacing 
of the light fringes in the case of limiting rectangles, two maxima for squares, 
and three maxima for hexagons. At these maxima, from the initial 
a2 = 3.13j.r (appropriate to the case of two rigid boundaries) the ratio of 
horizontal extent of each cell to the vertical spacing of the boundaries will 
be 2 for squares and limiting rectangles and 1-8 for hexagons. Schmidt 
& Milverton do not record any rotation of their beam to determine 
uniquely the plan-form. However, the average ratio of horizontal fringe 
spacing to cell height in their experiment was 2-1. They believed that they 
were observing squares. V17e can tentatively conclude that these cells 
were either squares or limiting rectangles, but not hexagons. 

The  qualitative aspects of our heat transport computations for various 
plan-forms will most probably be preserved in going from the symmetric 
case of two free boundaries to the symmetric case of two rigid boundaries. 
For two free boundaries we found that the square transports more heat, 
the limiting rectangle less heat than the hexagon. Hence one anticipates 
that heat transport is a selective factor in establishing the observed flow 
from the many solutions. 

4. A ' RELATIVE STABILITY ' CRITERION 

When seeking a realizable steady-state solution to the equations of 
motion one must verify not only that the solution formally satisfies the 
time-independent equations but also that it is stabIe against all infinitesimal 
disturbances which satisfy the boundary conditions. If it is not stable 
then surely there is at least one other solution to the equations. This other 
solution may not be a steady one in the local sense, but for fixed boundary 
conditions is must be statistically steady ; that is, integrals of moments of 
this solution over the entire field will be independent of time. 

The  general problem of the stability of a known solution v and T can 
be immensely complicated. For example, years of labour have been devoted 
to simple two-dimensional shear flow (the Orr-Sommerfeld problem) and 
no exact solution has yet been found. Hence it is improbable that we could 
formally determine the stability of finite amplitude solutions even if we 
knew them exactly. 
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Fortunately the answer to a simpler question will suffice here. We 
will assume that we know the complete set of steady and statistically steady 
solutions to the equations of motion. Then any experimentally realized 
solution is contained in this set. We ask, are any of these solutions stable 
against those infinitesimal disturbances that have the form of the other 
solutions ? If there is an affirmative answer for just one of these solutions, 
we will have determined the realized solution. If there are several solutions 
which are ‘ relatively stable ’, then either these solutions can be realized 
separately (i.e. they are metastable) or a broader class of infinitesimal 
disturbances must be considered to remove the remaining indeterminancy. 

In  formulating such a question we have hoped that a detailed knowledge 
of the individual solutions and their interactions would not be required 
to answer it. Indeed we seek some simple integral property of the solutions 
which will single out the stable one. 

From (l.l), (1.2) and (1.3) in dimensional form, the equations of an 
arbitrary disturbance v‘, T‘ on the field v, T are 

( a / a t - ~ V ~ ) T !  = - v . v T ~ - v ’ . v T - v ~ . v T ~ ,  (4.1 ) 

and v . v’ = 0. (4.3 1 

tr/2Pm)a(F2)m/at = (r/Prn>[K(T’VaT’>m + (W’T’PL- (T‘v’ * v~)rn1 

(apt  - vV2)v’  = - v . VV’ - V‘ . VV - V’ . VV’ - VF”/p, + y T’k, (4.2) 

These are the general equations which determine the stability of v, T. 
We first construct the disturbance power integrals (see (1.6) and (1.7)), 

(4.4) 

(4.5) 

and 

where T has been replaced by T+ T and ,8 = - %/az. If v and T are 
stable to the disturbance v‘, T‘, the right-hand sides of (4.4) and (4.5) 
will be negative. One may interpret (4.4) as the equation for the balance 
of entropy* associated with the disturbance T’. Equation (4.5) is the 
equation for the balance of kinetic energy of the disturbance v‘. The  first 
term on the right-hand side of (4.4) is proportional to the loss of entropy 
by thermal diffusion; the second is proportional to the gain of entropy 
through interaction with the initial mean temperature gradient P ;  and the 
third is proportional to the gain or loss of entropy through interaction with 
the initial field of temperature fluctuation. In  (4.5) the first term is the 
loss of kinetic energy of the fluctuation vf by viscosity, the second is the 
production of kinetic energy by convection and the last is the gain or loss 
of kinetic energy through interaction with the initial velocity field. 

We will now restrict the class of disturbances to be considered to those 
which have the form of steady or statistically steady solutions to the basic 

* In this irreversible process of steady convection we regard ‘ entropy ’ as propor- 
tional to and as a shorthand for the mean square of the local fluctuations of internal 
energy. We prescribe no (thermodynamic) role for this ‘ entropy ’ which cannot be 
deduced from the basic disturbance equation (4.1). 

~ - 
h a(v’. vl>,/at = v(v’ . V2V‘), + y(  WT’), - (v’ . v’ . VV),, 
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equations ; that is, 

where A and B are arbitrary amplitudes and vl, Tl are correct solutions. 
Then from (4.4), (4.5) and (4.6), 

V' = A v l ,  T' = BTl (4.6) 

- - I ,  A + I4 B,  aA - _  - - I l B + I , A ,  - - 
at at 
aB 

(4.7) 
where 

I = -  1- K ( T 1 V 2 T l ) m / ( ? ) m ,  ' ,= [(W1 T I P ) m - f T l / ( ~ ) ~ ~ ,  

f , =  ( V 1 e V 1 -  VV),, I4= Y ( ~ l T l ) m / ( v l - v l ) , .  

f T  = (vl '1  ' v T ) m ,  '3  - ["(vl * V2Vl )>n  + f ~ l / ( ~ l  . V l ) m ,  - -  

The solution of (4.7) will decay with time if 

But (Il + 13) contains the two large positive-definite diffusive dissipation 
terms and is invariably positive. Therefore decay will occur if 

Since vl, Tl are solutions, 

[$(Il + I,), - (I l  I3 - I ,  I4)I1l2 - &(Il + I , )  < 0.  (4.8) 

1113 > I ,  14. (4.9) 

(4.10) 

With the use of (4.10) the stability criterion (4.9) becomes 

LH'l T l ( P l - P ) l m + f T + f , ( W l  Tlpl)VL/Y(Wl Tl)m ' (4*11) 

The  basic equations for vl, TI allow the triple product integrals f ,  and f T  
to be expressed as double product integrals, that is, 

(4.12) 1 . f T =  ( v l . T I V T ) , -  - (TV1.VT,) ,  

= [T(aTl/at  - K V ~ T ~  - WlPl)lm, 
~- 

j, = (v. avl/at-vv. V ~ ~ , - ~ W T ~ ) ~ .  

All the double product terms of (4.12) vanish in horizontal integration 
if the field v, T is developed from a fundamental periodic function 
orthogonal to the fundamental function of vl, Tl.  This is the case for all 
different solutions which can be generated by the iterative method of the 
previous sections (for X < Z4X,). Hence in our problem f ,  and f T  vanish. 
T o  determine from (4.11) which of the many solutions is stable we must 
find that solution for which [WiT,(Pi-P)lm > 0, where the index i ranges 
over all solutions but the one considered. A physical interpretation of this 
conclusion is that the stable solution will produce more entropy per unit 
time from the mean temperature field of any other solution than it does 
from its own mean field. 

The  stability criterion can be further simplified and given another 
physical interpretation. 

(4.13) 

- 

- 
Since H = K P  + W T  for all solutions, then 

- 
[K.Ti(Pi-P)Im = ~ ( P p i - P ? ) m  > 0. 
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Condition (4.13) is not satisfied if (P:), > ( f t12 )m, ,  for on applying Schwarz’s 
inequality we have (Ptj; > ( p 2 ) m ( / 3 ~ ) m  > (Bpi);. Therefore a necessary 
condition for stability is that 

(P2)m ’ (Pt)rn> (4.14) 

that is, the stable solution has a greater mean-square gradient than any 
other solution. If there is only one such solution, the criterion (4.14) 
uniquely resolves the formal degeneracy. If several solutions have the 
same maximum ( P 2 ) l n ,  they are either metastable or a larger class of 
infinitesimal disturbances must be considered to decide which is realized. 

Yet another physical meaning can be given to the maximum (P2) ,  
criterion. From (4.,10), 

(4.15) 

which states that for the stable solution the rate of dissipation of kinetic 
energy minus a quantity proportional to the rate of increase of entropy 
by thermal diffusion is a maximum. Equation (4.15) may also be written 

(P2/P;)m - 1 = AT2F, 

where N =  (WT),/KP,, F -  (ET2),/(FF);- 1, (4.16) 

T h e  quantity N depends only upon the amplitude of the convective heat 
transport. T h e  quantity F depends only upon the x form of the heat 
transport. But all the solutions for A, found in 9 3 have identical z forms 
for WT.  Therefore the only stable solution found in $ 3  is the one of 
maximum convective heat transport. For (3 > 1 this solution is the square. 

A summary of our conclusions on relative stability is as follows. 
( a )  Maximum heat transport is the stability criterion for all symmetric 

A, solutions. 
( b )  Maximum (P2) ,  is the stability criterion for all solutions generated 

by the iteration of orthogonal linear forms (which includes all in this paper). 
(c) Equation (4.11) is the most general stability criterion for vertical 

convection. 
It is of some interest to relate the total potential energy of the conve5ting 

fluid to these stability conditions. I n  general the potential energy is V = gpz. 
Hence 

(4.17). 

where z is now measured from the mid-point of a symmetric convective 
field. From our density-temperature relation 

ajiaZ’ = (4.18) 
so that 
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The expression within curly brackets is zero when /3 = P, and approaches 
unity as ,8 approaches zero in all but the boundary regions. In  steady 
convection 

so that 

- ~ 

PIP, = 1 + [(WT)m- WTIl/cPm, 

In comparing two solutions of identical form, i.e. with identical values of 
WT/(  WT),, equation (4.20) asserts that the one of maximum heat transport 
will produce a minimum (v),. This conclusion is in keeping with the 
stability condition for A, deduced from (4.16). However, the general 
condition for relative stability is not the requirement that the total potential 
energy be a minimum though such a relation might have been supposed 
from considerations based on equilibrium mechanics. 

-- 

5 .  EXTENSION TO RIGID SURFACE BOUNDARY CONDITIONS 

In this final section we will discuss the determination of finite amplitude 
effects for two rigid boundaries and for one rigid and one free boundary. 
We can hardly expect the rigid boundaries to modify the qualitative 
properties of the free boundary convection, for the important physical 
processes and the symmetry remain unaltered. We can expect quantitative 
changes due to the additional constraint on motion near the boundary. 
Hdwever, the asymmetry introduced by the rigid-free boundaries can 
modify the dependence of initial growth on X and, as experiments bear out, 
can lead to hexagons as the preferred plan-form. We shall find that the 
significant qualitative effects of these boundary conditions can be deduced 
without the final lengthy numerical computation for the Xi .  

The complexity of these computations is perhaps the best measure of 
the limitations of the finite amplitude method studied in this paper. In 
conclusion we will turn from them to discuss alternative methods for 
determining finite amplitude effects. 

Rigid boundary analysis 
Proceeding just as in the simpler case, one writes the first-order solution 

for two rigid boundaries, as given by equations (2.9), (2.10) and (l.Zl), as 

I 3 

1 
W, = ZAicosh2pt2:+(~,y)- Wq, 

T, = 

(5.1) i 3 

1 
2 (4& - a2)A,cosh 2piu,.4(x,y) = t4, 

where x is now measured from the mid-point, - 4 < z < 3, a2 = ct2r2, 

AJA, and pi are the complex numbers determined by Pellew & Southwell, 
A, is chosen to normalize W,, and 4 is the normalized plan-form. In  
general 

- v: h,, = 2[ - (0: p ) W a t / a x  + (- vq #) t  awpx1, (5.2) 



2.54 m'. V. R. Mulkus and G. Veronis 

where 

Therefore 

-C2,hoo = a-2 2 2 A i A j p i [ ( - V f ~ ) ( 4 p ; - a 2 ) 2 + ( - V f # ) ( 4 p ~ - u 2 ) 2 ]  x 

x sinh 2(pi + pi)z, 
and 

3 3  

i = l j = - 3  

3 3  

i=l  j= -3  
LOO = 4 2 2 Ai A, pi[ (V - #2)(p; - p:) + r2(4$ - u2)]sinh 2(pi + pj)z, 

(5.4) 
where pj = - p+, Aj.= APj, A,, = 0. Hence, due to symmetry alone, A, = 0, 
because [cosh 2pi z sinh 2(pi + pj)zIm = 0. We let 

Wl = 4 2 2 P k i j  sinh2(Pi+pj)z, (5.5). 
i j  k 

where - vf P k i j  = a;Pkij. Then from (1.20) for W,, 

[ { 4 ( ~ i  + ~ j ) ~  - + a; hlP,ij 
= 2 4  Aj E-'/L~(( - Vf 42)(4p: - u ~ ) ~  + ( - Vf +')(4/4 - u ~ ) ~  + 

+ 4u20-1[ - v: (Q - p) - 4(& + p j )2 ( r#2  - #2)] (p; - $) + 
+ u2+[ - 0; r2 - 4(pi + ( 5 . 6 )  

As we saw in 5 3 ,  k sums over the three orthogonal functions cos27rlx, 
cos2rrmy and cos2rr1xcos2~my generated in h,, and Loo by the general 
rectangle, and over the two orthogonal functions 4, and 42 of (3.18) for 
the hexagon. 

r2] ( 4 4  - 

The  Tl determined by this W, is written 

Tl = 4 2 2 Gkij sinh 2(pi + pj)z (5.7) 
i j  h- 

where 

U; GkCj = Pkjj{4(pi - + 2a-lAi Aj ~ i { 4 ( 4 ~  - 1L2)(p; - p;) + 
+ - q i k .  

Recall that - -  
A2 = (Wo 0: Wok 'I W o  To - ( Wo TOM WG! 0; Wo + wo V;(hol+ h1o) + 

+o-lW0 V2(Lol +Llo)}m, (5.8) 
showing that the first finite amplitude results depend upon both the initial 
disturbance and the first distortion of this disturbance W,, T,, U,, and Vl. 
The  only computationally difficult term in A, due to the (Wo, To)-field 
alone is 

1 3  ( W ,  To Wo V; Wo)m = - - 2 A, Aj A, A,(4& - u ~ ) ~  x 
8 i .r=1 
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which is the sum of 324 complex numbers. But the last two terms in A, 
caused by the distortion introduce 1944 additional complex numbers. 
The task of computing the numbers involved in (5.9) for several plan-forms 
can hardly be justified at this time. However, these numbers determine 
our only finite amplitude result rigorously applicable to a realizable 
experiment and could be used to check the physical validity of the formalism. 

Analysis for one rigid-one ,free boundary 

solution 
The  case of one rigid and one free boundary leads to the first-order 

W, = 2 A,sinh2piz, (5.10) 

where 0 < un < 9 and AJA, and pi are known complex numbers as before. 
Comparing (5.11) and (5.1), we see that V~ho,+u-1V2L,o must be identical 
in form to (5.4), with the change that the index i runs from - 3 to 3 while 
the index j  runs from 1 to 3.  

3 

1 

Hence 

z =  - 3  

x [sinh2przsinh2(pi+pj)z]mn (5.11) 
where 

Piij = ( [ (4p~-a2)2(  - V:+,)+ ( 4 ~ ; - - - a ~ ) ~ (  - Vqt+b2)] - 

- 4a2o --I (pi - pa)[ v q ( p  - t+bZ) + 4(pt + pj)2(+2 - p)] - 
- u2u-l(4p; - az)[Vq r2 + 4(pLi+pj)zj)2z]}k. (5.12) 

I n  contrast with previous computations of A,, the z-function average 
[sinh2przsinh 2(pi+pi)z],, is not zero, while, as was noted in 9 3, PLij + 
will not vanish for hexagons. Therefore a finite A, exists for hexagons 
with one rigid and one free boundary. Similarly ( W ,  TI + Wl will 
not vanish and must be included in the heat transport. We will not proceed 
further with this particular evaluation of A, and ( W, TI + Wl To)m but 
will enquire into the qualitative consequences of their existence. 

First-order theory is indeterminate with respect to the sign of the 
motion in the centre of hexagons. I n  
contrast the sign of the amplitude of a rectangle is not a true degeneracy, 
since a change of sign leads to no observable change in the field of motion. 
The  conclusion that A, is not zero uniquely removes this degeneracy in the 
hexagon, for A, determines the sign of the amplitude E. From (1.19), 
E = (A-A,)/A, for the initial convection, and hence if A, is positive E is 
positive and the motion is up in the hexagon centre, whereas if A, is negative 
E is negative and the motion is down. We have estimated A, by graphical 
methods for u = S and find that A, + 9-5. Hence the motion is up  in the 
centre of hexagons as is observed. 

-- 

-- 

I t  could be either up or down. 
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One must now determine under what conditions the finite amplitude 
hexagon is preferred to the square or rectangle in the case of one rigid and 
one free boundary. T o  the A,-approximation, 

hence 
€2A,+EA1-(A-A,) = 0 ;  

E = (A1/2A,)[{l +4A,(A-A,)/X1}1’~-- 11, (5.13) 

whcre the second root is discarded since it does not vanish when A = A,. 
The  corresponding heat transport from (5.13) is 

-- (WT),, + ~ ~ ~ - ~ , ~ / ~ , - ~ ~ , / ~ , l ~ ( ~ , ~ 0 ~ ~ + ~ ~ ~ 0 ~ 1 +  W, To)mI ,  (5.14) 
- 

where we have kept all terms in (WT) ,  necessary in the determination 
of A,. Equation (5.14) asserts that the heat transport wi!l be less than that 
due to A, alone for values of (A-A,) close to zero. However if 
A,( W, T,  + W, To),1 ( = Q say) is positive the heat transport will exceed 
the value appropriate to A, when 

A- Ao 3 l A i l ( W , o ) Z 2 ( Q / h ) 1 ’ 2 +  (Wo ToL Q. (5.15) 

Since the value of A, for hexagons and the value of A, for squares will be 
comparable (certainly within a factor of two), then hexagons can become 
the preferred disturbance if Al(Wo T, + W, To);, is positive and if the 
critical value of (A-A,) as given by (5.15) is small enough so that (5.14) 
is still valid. We have not yet determined the magnitude of ( W,T, + W,To), 
but a graphical method of integration assures us that its sign is positive. 
Hence we conclude that hexagons wilI not appear as the initial instability 
with one rigid and one free boundary, but will appear for some finite ( A  - A,) 
with positive vertical velocity in their centres. There is some experimental 
evidence to  support this conclusion. Benard (1901) describes the initial 
appearance of convection due to cooling a fluid from above as ‘ ‘ a disordered 
cellular regime ” which becomes a steady field of hexagons after the cooling 
has continued a short time. 

-- 

-- 

Amplitude determination by integral techniques 
The  lengthy task of computation needed to determine finite amplitude 

effects for realistic boundary conditions encouraged us to consider less 
exact methods. Stuart (1958) describes the use of power integrals 
to determine the amplitude of any disturbance whose form is assumed to 
be a good approximation to a correct solution. Stuart’s study was concerned 
with finite amplitude processes in shearing flow, but he has discussed with 
us the application of this method to thermal convection. We will briefly 
outline our impressions of the virtues and limitations of the thermal power 
integrals as tools for finite amplitude study. In  particular, we will compute 
the heat transport for the case of two rigid boundaries which can be compared 
with the experimental results. 

I n  the steady state the kinetic power integral (1.7) is a homogeneous 
relation between the amplitudes and forms of v and T. If v = Av‘ and 
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T = BT', where T' and the W' component of v' are normalized, then (1.7) 
in non-dimensional form may be written 

BIA = V( -v' . V2~')m/r(WT'),. (5.16) 
On the other hand the thermal power integral equation (1.6) is an 
inhomogeneous relation since PISrn from (1.13) also contains the amplitude. 
Equations (1.6) and (1.13) may be written 

AB = (X-X,)/S, (5.17) 
where 

B ( -  T'V'T'), 
A (W), * 

Equation (5.17) for the convective heat transport is like the observed linear 
relation between heat transport and A, since S and A, will be constants for 
any particular form of v' and T'. If we use the form of the initial Kayleigh 
instability of the case of two free boundaries for v' and T',  then from (2.7), - 

(W'T'), = 1, 
and AB = 2(h-&), (5.18) 

independent of the plan-form of the initial disturbance. Equation (5.18) 
is identical with our results for A, in the case of roll cells with free boundaries. 
This is understandable, for the free roll is the one case in which U,, V,, 
W,, TI distortions and u effects did not influence initial growth. Since 
distortions and u effects uniformly tend to reduce amplitude we may hope 
that this use of the power integral sets an upper limit on heat transport. 

Other inhomogeneous integral relations may be deduced from the heat 
equation which lead to different but lower values of the heat transport 
at the same h and for the same choice of v', T'. For example we may write 
the non-dimensional heat equation from equations (1.5) and (1.13) as 

hW = h + [ W T -  (WT),n] W -  V2T= L. (5.19) 

Then squaring both sides and averaging we obtain the inhomogeneous 
relation 

(5.20) 

which must be satisfied by any correct solution to the problem. If we 
again use the form of the initial Rayleigh instability for the case of two 
free boundaries for v' and T',  but for simplicity use the roll plan-form 
(since (5.20) depends upon plan-form), then 

AB = (2h2-h:)1/2-X0. (5.21) 

Thus we have derived a different law for heat transport from that given 
by the power integral. In  general, equation (5.21) yields a lower heat 
transport for given X than does (5.18). Only for h + A, do the two formulae 
agree since it is only at infinitesimal AB that this choice of v' and T' is a 
correct solution. In  spite of this difficulty, the power-integral heat transports 
seem to bear too remarkable a resemblance to the observations to be 

P.M. R 
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- 
1 
2 
3 
4 
5 
6 

fortuitous, as we will now show by a computation of the Rayleigh function 
for rigid boundaries paralleling (5.18). 

Pellew & Southwell have proposed an approximate solution to the 
first-order characteristic functions (for rigid boundaries) which is easier 
to work with than the correct solution, 

(5.22) 
and 

T‘ = 2/295sin~z, 
where q5 is the normalized plan-form, N1I2 is a normalizing constant, 
P = 0.4921 and Q = 0-3416 are constants chosen to satisfy boundary 
conditions. Using this form and relation (1.21) to fix B/A, equation (5.17) 
leads to As = 1713.7, S = 1/1-51, and 

AB = 1.51(X- 1713.7). (5.23) 
The correct value of A, for the infinitesimal disturbance is 1707.8, indicating 
that (5.22) is an adequate approximation to the correct infinitesimal solution. 
The heat transport law (5.23) is in such good agreement with the observations 
reported in table 1 that one is tempted to extend this use of the power integrals 
beyond the range of steady convection. As discussed in the Introduction, 
a second instability occurs at X = 18000, leading to aperiodic convection 
and an abrupt change to a new linear law of heat transport. In  all, five or 
six transitions appear in the data up to X t lo6, where ‘ fully turbulent ’ 

W’ = N1’2[sinn~Z+Pcosh~(Z- &)+ QT(z- &)sinhT(z- &)]4, 

1 708 
17 600 
61 000 

170 000 
411 000 
855 000 

1 7 0 0 k  80 
18000+ 1,000 
55000+ 4500 

170000~15000 
425 OOOt20000 
860 000 & 30 000 

-- 
1.51 
1.72 
1.83 
1.9- 
1*9+ 
2 .o 

AB/A 
Theoretical 

0 
1.37 
2.63 
4.29 
6.87 
8-52 

AB/h 
Experi- 
mental 

0 
1.3k0.1 
2.3 kO.1 
3.4 k 0.1 
4.5 0.1 
5.7t0.1 

-__ 

~ 

Table 1. Convective heat transport at the experimental transitions computed from 
equation (5.24). 

conditions seem finally to be achieved. If, as suggested by the success of 
the power integral, self-distortion of a disturbance is not very important, 
then perhaps the interaction between several different disturbances plays 
a small role in the determination of heat transport. T o  test this possibility 
we can determine the total heat transport which would result from the 
independent growth of first, second and higher Rayleigh-like modes of 
instability. That is, 

AB = 2 (h-h,qi)/Si, (5.24) 

where the Si determine the slope of the growth curve for the mode i and 
Asl is the yalue of h for instability for that mode. Equation (5.24) has the 
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form of the observed heat transport up to X = los. The values of the Si 
and As( have been computed in the same way as S and A, of (5.23) with the 
approximate functions of Pellew & Southwell for each instability. The 
results are tabulated in table 1 and compared with observations in water 
made by Malkus (1954a). In dimensional form ABIA is the ratio of the 
convective heat transport to  the heat transport in the absence of convection. 
For large values of A, St71 approaches its free surface value and has been 
set equal to this value for A greater than 800000. Equation (5.24) agrees 
quite well with experiment at  the end of the steady convective range, but 
by A + 55 000 at the end of the first aperiodic range there is an error of 
approximately 15 ”/. This percentage error continues to increase with X 
through all observable transitions. Equation (5.24) cannot be correct in 
the range of X beyond observable transitions since it leads to an incorrect 
gross dependence of heat transport on h (giving ABIA N W4 instead of the 
observed variation as All3). However it is rather remarkable that (5.24) 
works as well as it does. This suggests to us the possibility that aperiodicity 
permits the several disturbances to be more or less independent which 
certainly could not be the case if they were steady superimposed motions. 
The quasi-independence due to the aperiodicity could permit a greater 
release of potential energy and hence lead to a more stable field of motion 
than any other. Such thoughts are of course only speculation and a formal 
theory for the onset of thermal turbulence has yet to  be found. 

6. CONCLUDING REMARKS 

To summarise the conclusions : the initial finite amplitude convection 
is determined primarily by the distortion of the mean temperature field, 
secondarily by the self-distortion of the disturbance ; the number of formal 
steady-state solutions increases with increase of Rayleigh number beyond 
the critical value ; however this degeneracy is removed if there is only one 
finite amplitude solution which has a greater mean-square temperature 
gradient than any other solution. More particular conclusions are that : 
square plan-forms are preferred to hexagonal plan-forms in ordinary fluids 
with symmetric boundary conditions ; the initial stages of convection are 
markedly altered in a fluid of small Prandtl number ; the effect of distortion 
of the disturbance on the thermal field prevents the mean gradient of the 
temperature from changing sign in the mid-regions of the fluid ; the zero- 
average non-linear terms reduce the amplitude of the disturbance ; the pre- 
ferred horizontal wave-number increases with increasing Rayleigh number. 

The approach to finite amplitude processes given above is applicable 
to those convection and shear flow studies with adequately solved stability 
problems. The method can determine those conditions which permit a 
steady finite amplitude disturbance to occur before the appearance of the 
infinitesimal disturbance. Hence it is a tool to extend the study by Meksyn 
& Stuart (1952) of the onset of disturbances in channel shear flow. The 
method is of particular value in the resolution of explicit or hidden 
degeneracies in a stability theory. Hidden degeneracies exist when there 
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are velocity-dependent forces other than advection which play no role in 
the criterion for instability. This occurs for example in the study of 
geomagnetism. There one wishes to determine when an electrically 
conductive fluid heated from below will select a joint magneto-convective 
state of motion rather than a pure convective state. 

However, beyond the initial finite amplitude effects the technique we 
have described here can become prohibitively tedious. In addition the 
€-sequence will fail to describe the preferred field of motion after a second 
instability has occurred, though this sequence may still converge to a set 
of formal steady-state solutions. We continue to search for an adequate 
descriptive framework which can include the second instability and in 
particular can deal with aperiodicity. 

This study bears a relation to two previous works on fully developed 
turbulence. A paper on turbulent convection (Malkus 1954b) and a 
paper on turbulent shear flow (Malkus 1956) were based on the assumption 
that the most stable field of flow would be that one which released the 
maximum amount of potential energy per unit time. The section of this 
paper on relative stability suggests that a maximum mean-square temperature 
gradient (equation (4.14)) is the more appropriate stability criterion. The 
only qualitative prediction of the earlier works which appears to be altered 
by this change is the structure of the boundary regions and this causes a 
reduction in the turbulent transports. These modifications will be 
discussed in a following paper. 

I t  was our good fortune that Dr J. T. Stuart was visiting the United 
States during the preparation of this paper. We wish to acknowledge 
many fruitful discussions of our common problem with him. 

The work was performed under the auspices of the Office of Naval 
Research and is Contribution No. 943 from the Woods Hole Oceanographic 
Institution. 
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